Scientists have found a quasar spewing a gigantic radio jet in space at a time in the early universe when such objects are nearly impossible to find.Β
Quasars, a portmanteau for “quasi-stellar objects,” are blindingly bright galaxy cores. Through powerful telescopes, these distant objects can look like stars, but they’re the resulting light from feasting supermassive black holes.Β
The jet, sprawling at least 200,000 light-years, double the span of the Milky Way, emerges from the J1601+3102 quasar, born less than 1.2 billion years after the Big Bang. Though a billion years later may not seem like the early days, that period occurred when the universe was only nine percent of its current age of 13.8 billion β making it a mere toddler.
“Itβs only because this object is so extreme that we can observe it from Earth, even though itβs really far away,” said Anniek Gloudemans, a research fellow at the federally funded NOIRLab, in a statement.
Finding this radio jet, first discovered by the European Low Frequency Array Telescope, is an enormous achievement. Follow-up observations ensued in near-infrared light with the Gemini North Telescope and in visible light with Hobby Eberly Telescope. A research team has characterized the object in a new paper published in The Astrophysical Journal Letters.Β
These jets become elusive the farther back in time astronomers try to look because of the so-called cosmic microwave background. The ancient radiation, the earliest fossil of light from 380,000 years after the Big Bang, tends to swamp out more subtle signals.
Although quasars are technically difficult to find in the early universe, the nearest quasars to Earth are still several hundred million light-years away. That quasars aren’t found closer to home is a clue they are ancient relics. Scientists continue to hunt for them because they provide insight into the evolution of galaxies and the universe as a whole.Β
Black holes in general are some of the most inscrutable things in space. Astronomers believe these invisible giants skulk at the center of virtually all galaxies. Falling into one is an automatic death sentence. Any cosmic stuff that wanders too close reaches a point of no return.Β
But scientists have observed something weird at the edge of black holes’ accretion disks, the rings of rapidly spinning material around the holes, like the swirl of water around a bathtub drain: A tiny amount of the material can suddenly get rerouted. When this happens, high-energy particles get flung outward as a pair of jets, blasting in opposite directions, though astronomers haven’t quite figured out how they work. It’s also still a mystery when exactly in cosmic history the universe started making them.Β
Despite this jet’s length, it’s a pipsqueak compared to others scientists have discovered in later eras. Porphyrion, observed 6.3 billion years after the Big Bang, has a 23 million light-year-long jet. The J1601+3102 quasar is also of modest size, just 450 million times more massive than the sun. Quasars are sometimes known to tip scales at billions of times heavier than the sun.Β
“Interestingly, the quasar powering this massive radio jet does not have an extreme black hole mass compared to other quasars,” Gloudemans said. “This seems to indicate that you donβt necessarily need an exceptionally massive black hole or accretion rate to generate such powerful jets in the early universe.”